miR‐34a−/− mice are susceptible to diet‐induced obesity
نویسندگان
چکیده
OBJECTIVE MicroRNA (miR)-34a regulates inflammatory pathways, and increased transcripts have been observed in serum and subcutaneous adipose of subjects who have obesity and type 2 diabetes. Therefore, the role of miR-34a in adipose tissue inflammation and lipid metabolism in murine diet-induced obesity was investigated. METHODS Wild-type (WT) and miR-34a(-/-) mice were fed chow or high-fat diet (HFD) for 24 weeks. WT and miR-34a(-/-) bone marrow-derived macrophages were cultured in vitro with macrophage colony-stimulating factor (M-CSF). Brown and white preadipocytes were cultured from the stromal vascular fraction (SVF) of intrascapular brown and epididymal white adipose tissue (eWAT), with rosiglitazone. RESULTS HFD-fed miR-34a(-/-) mice were significantly heavier with a greater increase in eWAT weight than WT. miR-34a(-/-) eWAT had a smaller adipocyte area, which significantly increased with HFD. miR-34a(-/-) eWAT showed basal increases in Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a(-/-) intrascapular brown adipose tissue had basal reductions in c/ebpα and c/ebpβ, with in vitro miR-34a(-/-) white adipocytes showing increased lipid content. An F4/80(high) macrophage population was present in HFD miR-34a(-/-) eWAT, with increased IL-10 transcripts and serum IL-5 protein. Finally, miR-34a(-/-) bone marrow-derived macrophages showed an ablated CXCL1 response to tumor necrosis factor-α. CONCLUSIONS These findings suggest a multifactorial role of miR-34a in controlling susceptibility to obesity, by regulating inflammatory and metabolic pathways.
منابع مشابه
Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner
Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is designed to test the efficacy of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, aga...
متن کاملEffect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease
MicroRNA-34a (miR-34a) is thought to be involved in nonalcoholic fatty liver disease (NAFLD). However, the association between altered expression of miR-34a and the pathophysiological features of NAFLD remains unclear. Here, we investigated the mechanisms by which miR-34a influences NAFLD through the PPARα-related pathway. Real-time quantitative PCR, western blotting and other assays kit were u...
متن کاملIsocaloric Pair-Fed High-Carbohydrate Diet Induced More Hepatic Steatosis and Inflammation than High-Fat Diet Mediated by miR-34a/SIRT1 Axis in Mice
To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA-34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Lieber-DeCarli liquid diet containing either high fat (HFLD) or high carbohydrate (HCLD) for 16 week...
متن کاملmiR-155 Deletion in Female Mice Prevents Diet-Induced Obesity
Obesity is a growing epidemic in developed countries. Obese individuals are susceptible to comorbidities, including cardiovascular disease and metabolic disorder. Increasing the ability of adipose tissue to expend excess energy could improve protection from obesity. One promising target is microRNA (miR)-155-5p. We demonstrate that deletion of miR-155 (-5p and -3p) in female mice prevents diet-...
متن کاملA Metabolic Stress-inducible miR-34a-HNF4α Pathway Regulates Lipid and Lipoprotein Metabolism
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, but its underlying mechanism is poorly understood. Here we show that hepatocyte nuclear factor 4α (HNF4α), a liver-enriched nuclear hormone receptor, is markedly inhibited, whereas miR-34a is highly induced in patients with non-alcoholic steatohepatitis, diabetic mice and mice fed a high-fat diet. miR-34a is ess...
متن کامل